0%

算数基本定理及其推论证明

算术基本定理:每个自然数有且仅有一种被写为素数乘积的方式(不考虑先后顺序)。

即合数分解质因数形式是唯一的。

推论:如果一个素数 $p$ 是乘积 $ab$ 的因子,则 $p$ 必须或是 $a$ 的因子,或是 $b$ 的因子。

这个推论是“显而易见”的,但是直接证明却有难度,很适合使用反证法。

证:

假设

这说明,$ab$ 有两种质因数分解形式,与算术基本定理矛盾,得证。